УДК 531.383.11:531.714.7

## ФОРМИРОВАНИЕ ГИРОМАГНИТНОГО КУРСА В МИКРОМЕХАНИЧЕСКОЙ КУРСОВЕРТИКАЛИ

ГАЛКИН Виктор Иванович, к. т. н., с. н. с, КУЗИН Евгений Владимирович, КОНДРАТЬЕВ Александр Владимирович

ПАО «Московский институт электромеханики и автоматики» E-mail: inbox@aomiea.ru

В статье рассмотрены способы формирования гиромагнитного курса в микромеханической гировертикали при использовании внешнего магнитного компаса и встроенного в курсовертикаль магнитного датчика. Приведены структурно-функциональные схемы и алгоритмы расчета гиромагнитного курса.

**Ключевые слова:** микромеханическая курсовертикаль, гиромагнитный курс, магнитный компас, магнитный датчик, девиация.

### MAGNETIC HEADING GENERATION IN MICROMECHANICAL ATTITUDE AND HEADING REFERENCE SYSTEM

Victor I. GALKIN, PhD in Engineering, Evgeny V. KUZIN Alexander V. KONDRATYEV 'Moscow Institute of Electromechanics and Automatics' PJSC E-Mail: inbox@aomiea.ru

The article considers the method of magnetic heading generation in micromechanical vertical gyro using magnetic direction indicator and magnetic sensor integrated into attitude and heading reference system. Structural-functional diagrams and magnetic heading calculation algorithms are given.

**Keywords:** micromechanical attitude and heading reference system, magnetic heading, magnetic direction indicator, magnetic sensor, deviation.

### Введение

В микромеханических курсовертикалях из-за невысокой чувствительности микромеханических гироскопов (0,01 ÷ 0,03)°/с определять начальный курсовой угол по составляющим скорости вращения Земли не представляется возможным. Поэтому определять начальный курсовой угол и осуществлять компенсацию дрейфа курсового гироскопа необходимо с помощью внешних источников информации, например, по показаниям магнитного компаса или встроенного магнитного датчика.

В настоящей статье рассматриваются особенности формирования гиромагнитного курса в микромеханической курсовертикали.

# Структурно-функциональная схема микромеханической курсовертикали с коррекцией от магнитного компаса

В общем виде структурно-функциональная схема представлена на рис. 1.



Рис. 1. Структурно-функциональная блок-схема построения микромеханической курсовертикали с радиальной коррекцией и гиромагнитным курсом

В представленной схеме в блоке ЧА-1 по показаниям гироскопов  $(\omega_{x_1,y_1,z_1})$  формируется матрица направляющих косинусов **A**, определяющая угловое положение виртуальной платформы в инерциальной системе координат [1]:

$$\mathbf{A} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} =$$

|   | $\sin\psi\cos\vartheta$ | $\cos\psi\sin\gamma - \sin\psi\sin\vartheta\cos\gamma$ | $\sin\psi\sin\vartheta\sin\psi+\cos\psi\cos\gamma$     |    |
|---|-------------------------|--------------------------------------------------------|--------------------------------------------------------|----|
| = | $\cos\psi\cos\vartheta$ | $-\cos\psi\sin\vartheta\cos\gamma-\sin\psi\sin\gamma$  | $\cos\psi\sin\vartheta\sin\gamma - \sin\psi\cos\gamma$ | -  |
|   | sin 9                   | $\cos 9 \cos \gamma$                                   | $-\cos 9 \sin \gamma$                                  |    |
|   |                         |                                                        | (                                                      | 1) |

В блоке ЧА4 по показаниям матрицы А рассчитываются углы тангажа и крена, а в блоке ЧА-5 — значение гиромагнитного курса:

$$\vartheta = \operatorname{arctg}(a_{31} / \tilde{a}_0); \quad \tilde{a} = \operatorname{arcsin}(a_{33} / \tilde{a}_0); \quad (2)$$

$$\Psi_{\Gamma M}(n_3) = \arcsin \frac{a_{11}(n_3)}{\tilde{a}_0(n_3)},\tag{3}$$

где:

KDAI

$$\tilde{a}_0(n_3) = \sqrt{a_{32}^2(n_3) + a_{33}^2(n_3)}, \quad \tilde{\tilde{a}}_0(n_3) = \sqrt{a_{11}^2(n_3) + a_{21}^2(n_3)}$$

Радиальная коррекция углового положения виртуальной платформы осуществляется по показаниям акселерометров при полете ЛА без ускорений следующим образом [2]. В блоке ЧА-2 с помощью матрицы А производится перепроектирование показаний акселерометров из связанных осей  $a_{x_1,y_1,z_1}$  на инерциальные  $A_{x,y}$ :

$$A_{x} = a_{11} a_{x1} + a_{12} a_{y1} + a_{13} a_{z1};$$
  

$$A_{y} = a_{21} a_{y1} + a_{22} a_{y1} + a_{23} a_{z1}.$$
(4)

В блоке ЧА-3 линейные ускорения преобразуются в инерциальные угловые скорости, используемые для коррекции положения виртуальной платформы в инерциальной системе координат:

$$\omega_x = -K_1 A_y; \quad \omega_y = K_1 A_x, \tag{5}$$

где:  $K_1$  — коэффициент преобразования линейных ускорений в корректирующие угловые скорости  $\omega_{xy}$ .

Корректировка положения виртуальной платформы осуществляется в блоке ЧА-1 путем перемножения текущего кватерниона на корректирующий кватернион.

В блоке ЧА-6 формируется сигнал коррекции углового положения виртуальной платформы по курсу  $\omega_z$ , а в блоке ЧА-7 рассчитывается магнитный курс  $\psi_M$  по показаниям  $B_{x_1,y_1,z_1}$  встроенного магнитного датчика.

Формирование гиромагнитного курса может быть осуществлено двумя способами: от внешнего магнитного компаса и от магнитного компаса, встроенного в курсовертикаль.

В зависимости от типа используемого магнитного компаса формирование корректирующего сигнала имеет свои особенности.

## Формирование гиромагнитного курса при использовании внешнего магнитного компаса

Структурно-функциональная схема блока ЧА-6 формирования гиромагнитного курса от внешнего компаса показана на рис. 2.



Рис. 2. Структурно-функциональная схема блока ЧА-6 коррекции гиромагнитного курса от внешнего магнитного компаса

Информация от внешнего магнитного компаса  $\psi_{\rm M}$  передается потребителю уже с учетом углового положения ЛА по тангажу и крену и с учетом девиации на конкретном ЛА [3, 4]. Кроме того, в ней содержатся признаки исправности магнитного компаса (ПИК) и достоверности передаваемой информации (ПДИ). Блок ЧА-7 в схеме рис. 1 в этом случае не используется.

При неисправности магнитного компаса или недостоверности передаваемой информации угловая скорость обратной связи приравнивается к нулю.

При исправности магнитного компаса и достоверности передаваемой информации угловая скорость обратной связи  $\omega_z(n_3)$  рассчитывается по разности гиромагнитного  $\psi_{\Gamma M}$  и магнитного  $\psi_M$  курсов на каждом такте  $h_3$  их измерений (рис. 2). Рассчитанная таким образом угловая скорость передается в блок ЧА-1 (рис. 2), где и производится корректировка углового положения виртуальной платформы путем перемножения соответствующих кватернионов.

Начальное значение гиромагнитного курса  $\psi_{\Gamma M_0}$  устанавливается в процессе выставки курсовертикали.

# Формирование гиромагнитного курса при использовании встроенного в курсовертикаль магнитного датчика

Структурно-функциональная схема блока ЧА-7 (рис. 1) представлена на рис. 3 (стр. 7).

В этом случае информация о магнитном курсе  $\psi_M$  формируется внутри курсовертикали по показаниям трехосного цифрового магнитометрического датчика [5] (блок ЧА-7, рис. 1). Показания датчика в виде составляющих магнитного поля Земли калибруются — определяются нулевой сигнал и масштабный коэффициент. Кроме того, в составе ЛА определяются и учитываются коэффициенты девиации, вызванные искажением магнитного поля Земли конструктивными и активными элементами ЛА. Влияние углов наклона ЛА на показания магнитных датчиков рассчитывается по показаниям акселерометров курсовертикали.

Функционирование блока ЧА-07 осуществляется следующим образом. По поступающей из датчика температуры информации (T) из памяти микропроцессора выбираются соответствующие значения нулевых сигналов  $B_{0_i}$ , масштабных коэффициентов и углов неортогональности измерительных осей  $\beta_{ij}$  датчика магнитного поля, определенные в заводских условиях. В субблоке 2 производится корректировка значений индукции магнитного поля  $B_i$ , поступающих из датчика магнитного поля Земли:

🍫 КРЭТ

$$\begin{bmatrix} B_{x_{1}}^{*} \\ B_{y_{1}}^{*} \\ B_{z_{1}}^{*} \end{bmatrix} = \begin{bmatrix} k_{x_{1}} & \beta_{x_{1}y_{1}} & \beta_{x_{1}z_{1}} \\ \beta_{y_{1}x_{1}} & k_{y_{1}} & \beta_{y_{1}z_{1}} \\ \beta_{z_{1}x_{1}} & \beta_{z_{1}y_{1}} & k_{z_{1}} \end{bmatrix} \cdot \begin{bmatrix} \left( B_{x_{1}} - B_{0_{x_{1}}} \right) \\ \left( B_{y_{1}} - B_{0_{y_{1}}} \right) \\ \left( B_{z_{1}} - B_{0_{z_{1}}} \right) \end{bmatrix}.$$
(1)



Рис. 3. Структурно-функциональная схема блока ЧА-7

В субблоке 3 производится учет девиации — смещения нулевых сигналов  $\Delta B_{\mu_i}$ , вызванного активными магнитными полями на борту ЛА, и изменением масштабного коэффициента  $k_{\mu_i}$ , вызванного экранирующими магнитное поле Земли ферритовыми элементами конструкции ЛА [6]:

$$\hat{B}_{i} = \frac{B_{i}^{*} - \Delta B_{\Pi_{i}}}{k_{\Pi_{i}}}.$$
(2)

Значения коэффициентов девиации  $\Delta B_{\Delta_i}$  и  $k_{\Delta_i}$  определяются в процессе калибровки магнитного компаса в составе ЛА по специальным методикам путем поворота магнитного компаса на 360° вокруг вертикальной оси *Y*1 и горизонтальной оси *Z*1.

В субблоке 3 сравнивается углы тангажа 9 и крена  $\gamma$ , поступающие из блока ЧА-4 об угловом положении магнитного датчика, с допустимыми  $9_{\text{доп}}, \gamma_{\text{доп}}$  для заданной точности измерений поля Земли магнитным датчиком. Если заданное условие не выполняется, то дальнейшие расчеты не производятся, а в блок ЧА-6 передается признак ПДИ = 1 о недостоверности информации, получаемой с магнитного датчика.

Если заданное условие выполняется, то производится перепроектирование составляющих магнитного поля  $\hat{B}_{x_1,y_1,z_1}$  из связанных осей на инерциальные  $B_{x,y}$  с помощью матрицы **A**:

$$B_{x} = a_{11}\hat{B}_{x_{1}} + a_{12}\hat{B}_{y_{1}} + a_{13}\hat{B}_{z_{1}};$$

$$B_{y} = a_{21}\hat{B}_{x_{1}} + a_{22}\hat{B}_{y_{1}} + a_{23}\hat{B}_{z_{1}}.$$
(3)

Рассчитанные значения составляющих магнитного поля Земли *В*<sub>*x,y*</sub> передаются в субблок 7, в котором производится вычисление магнитного курса:

$$\psi_{0_{\rm M}} = \arccos \frac{B_y}{\sqrt{B_x^2 + B_y^2}}.$$
(4)

Для определения магнитного курса в диапазоне  $(0 \div 360)^{\circ}$  необходимо учитывать знаки при составляющих магнитного поля Земли:  $\Psi_{0_{M}}$ ;

— при  $(+B_y, +B_x)$  $\psi_M = \psi_{0_M};$ — при  $(-B_y, +B_x)$  $\psi_M = \pi - \psi_{0_M};$ — при  $(-B_y, -B_x)$  $\psi_M = \pi + \psi_{0_M};$ — при  $(+B_y, -B_x)$  $\psi_M = 2\pi - \psi_{0_M}.$ 

Рассчитанное значение магнитного курса передается в блок ЧА-6 рис. 1, в котором определяется угловая скорость  $\omega_z$ , корректирующая в блоке ЧА-1 угловое положение виртуальной платформы по курсу.

крэт

#### Результаты эксперимента

Экспериментальные исследования гиромагнитного курса проводились в составе трехосного измерителя угловых скоростей и линейных ускорений ИПДММ-1, укомплектованного цифровым магнитным компасом HMR3000 (рис. 4). Информационная связь между ними осуществлялась по интерфейсу RS422.



Рис. 4. Трехосный измеритель ИПДММ-1, укомплектованный цифровым магнитным компасом HMR3000

На рис. 5 (стр. 10) показаны графики измерения магнитного поля Земли цифровым датчиком HMC1023 американской фирмы «Honeywell», из которых были определены коэффициенты девиации: смещение нулевого сигнала  $\Delta B_{\Pi} = 339$  нТл и масштабный коэффициент  $k_{\Pi} = 1,0032$ .

На рис. 6 (стр. 10) приведены результаты измерения гиромагнитного курса микромеханическим ИПДММ-1, укомплектованным магнитным компасом HMR3000 американской фирмы «Honeywell».

🔥 КРЭТ



Рис. 5. Графики измерения магнитного поля Земли магнитным датчиком НМС1023



Рис. 6. Графики измерения гиромагнитного курса микромеханическим ИПДММ-1, укомплектованным магнитным компасом HMR3000,

где: 1 — график истинного курса после вычитания из гиромагнитного курса магнитного склонения; 2 — график гиромагнитного курса.

### Литература

1. Галкин В. И. Гироскопические приборы на микромеханических датчиках – Проблемы и пути их решения, LAP LAMBERT Academic Publishing RU, ISBN: 978-620-2-79865-5, 2020 г. – 165 с.

2. Галкин В. И., Кузин Е. В., Воробьев Д. Н. Способ управления цифровой платформой в бесплатформенной гировертикали и устройство для его реализации // Патент РФ № 2667320, Бюллетень изобретений № 26, 2018 г.

3. Smart Digital Magnetometer HMR3000. www.honeywell.com

4. Цифровой магнитный компас, республика Беларусь. tsp@tspbel.com

5. 3-axis magnetic sensor HMC1023. www.magneticsensors.com

6. Магнитный компас и система GPS. info@gpsru.com